Blood Vessel Segmentation of Retinal Images Based on Neural Network
نویسندگان
چکیده
Blood vessel segmentation of retinal images plays an important role in the diagnosis of eye diseases. In this paper, we propose an automatic unsuper‐ vised blood vessel segmentation method for retinal images. Firstly, a multidimensional feature vector is constructed with the green channel intensity and the vessel enhanced intensity feature by the morphological operation. Secondly, selforganizing map (SOM) is exploited for pixel clustering, which is an unsupervised neural network. Finally, we classify each neuron in the output layer of SOM as retinal neuron or non-vessel neuron with Otsu’s method, and get the final segmen‐ tation result. Our proposed method is validated on the publicly available DRIVE database, and compared with the state-of-the-art algorithms.
منابع مشابه
Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters
In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...
متن کاملSegmentation of Blood Vessels in Retinal Images Based on Neural Network (Nn) Scheme of Gray-Level and Moment Invariants-Based Features
In this paper presents , segmentation of blood vessels in retinal images based on neural network (NN) scheme of gray-level and moment invariants-based features. In the past, rural based methods are used segment the blood vessels. It has more complexity and less accuracy of blood vessels detection in retinal images. This paper proves better performance in terms of blood vessel detection in stare...
متن کاملComputerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images
Diabetic retinopathy is a severe sight threatening disease which causes blindness among working age people. This research work presents a retinal vessel segmentation technique, which can be used in computer based retinal image analysis. This proposed method could be used as a prescreening system for the early detection of diabetic retinopathy. The algorithm implemented in this work can be effec...
متن کاملBlood Vessel Segmentation for Retinal Images Based on Am-fm Method
This system proposes a new supervised approach for the blood vessel segmentation method in retina image. This proposed system overcomes the problem of segmenting thin vessels. This method uses a Fuzzy Neural Network (FNN) scheme for pixel classification and computes a 7-D vector composed of gray-level, moment invariants-based features for pixel representation and AM-FM method for composition of...
متن کاملNeural Network Based Classifier for Retinal Blood Vessel Segmentation
A supervised method is proposed for automated segmentation of vessels in fundus images of retina. This method is used to detect the retinal diseases by extracting the retinal vasculature utilizing 9-D feature vector based on orientation analysis of gradient vector field, morphological transformation, line strength measures, and Gabor filter responses. The feature vector encodes information to h...
متن کاملRetinal Vessel Segmentation employing Neural Network and Feature Extraction
Diabetic retinopathy, Glaucoma, Hypertension are the most common sight threatening eye diseases due to the changes in the blood vessel structure. The retinal blood vessel segmentation helps to identify the successive stages of a these diseases and thus helps to treat them at early stages. Blood vessel segmentation by making use of multilayer perceptron neural network is one such technique used ...
متن کامل